Transforming degraded smallholder farmland into multi-functional land use systems: A case study from Tanzania

1Anika Reetsch, 2Gerald Kapp, 3Karl-Heinz Feger, 4Kai Schwärzel and 5Christina Dornack

1Researcher at UNU-FLORES and Technische Universität Dresden
2Professor at the Institute of International Forestry and Forest Products of Technische Universität Dresden
3Professor of Institute of Soil Science and Site Ecology of Technische Universität Dresden
4Academic officer at Institute for Integrated Management of Material Fluxes and Resources, United Nations University
5Professor at Institute of Waste Management and Circular Economy of Technische Universität Dresden

In our research, we have studied smallholder farmers in degraded farming systems in Northwest Tanzania and have compared them with farm households who were trained in sustainable land management by a local Farmer Field School. Both groups of farmers were affected by severe environmental degradation and poor soil fertility, but trained farmers have transformed degraded farmland into fertile, multi-functional land use systems. In this presentation, we discuss the successes and failures of both groups of farmers and draw conclusions towards restoring degraded land use systems. Farmers without training cannot restore degraded farmland with traditional agricultural management alone and fail to produce enough food, fodder, biofuel and timber to support the whole family. The reasons for their failure are manifold and include environmental and socio-economic dimensions, e.g. poor management of soils and farm waste, lacking adaptation to climate change, traditional gender roles, and the loss of knowledge and labour in HIV/AIDS-affected households. In comparison, trained farmers change nutrient management by using advanced composting techniques. They also cultivate a higher variety of crops and trees, introduce organic pesticide management, practise zero-grazing on nearby farmland to ease manure collection, reduce open-grazing in the grassland, construct vegetable gardens that are watered by drip irrigation in the dry season, change gender roles and communication structures. Consequently, the main differences between both groups of farmers occur in food security, health status, education level, marketing, income generation, prosperity, and gender-related responsibilities. However, two challenges are not solved yet. First, part of the trained farm households fails to increase their biomass production and to escape poverty. Second, the full potential of organic farm waste being used as soil fertiliser is not exhausted, as human excreta is not integrated into nutrient management. We assume that soil nutrient balances would be significantly enhanced by integrating safe, low-tech solutions that use human excreta and minimal use of mineral fertiliser on humus-enriched soils. Farm households who are most vulnerable to food security, e.g. female-headed and HIV/AIDS-affected households, first need to get support in strengthening their socio-economic base before
transforming the farm management. In conclusion, local farmer field schools significantly contribute to restoring land degradation. To transform smallholder agriculture in Tanzania, a joint partnership with local governmental organisations could help farmers to escape poverty and become food secure (SDG 1 and SDG 2). Similar approaches could support smallholder farmers in East Africa, where they contribute to three-fourth of the agricultural production.

Keywords: